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1
SYSTEM AND METHOD FOR FAILURE
DETECTION FOR ARTIFICIAL LIFT
SYSTEMS

TECHNICAL FIELD

This invention relates to artificial lift system failures in oil
field assets, and more particularly, to a system, method, and
computer program product for failure detection for artificial
lift systems.

BACKGROUND

Artificial lift techniques are widely used to enhance pro-
duction for reservoirs with formation pressure too low to
provide enough energy to directly lift fluids to the surface.
Among various artificial lift techniques in the industry (such
as Gas Lift, Hydraulic Pumping Units, Electric Submersible
Pump, Progressive Cavity Pump, Plunger Lifts and Rod
Pump techniques), the Sucker Rod Pump technique is the
most commonly used artificial lift method. For example, rod
pump systems currently constitute approximately 59% of all
Artificial Lift in North America and 71% in the rest of the
world. Furthermore, about 80% of United States oil wells are
considered to be marginal or stripper wells, which produce an
average of ten barrels per day or less over a twelve month
period and primarily are produced using rod pump systems.
In the United States, rod pump systems are currently used on
about 350,000 wells.

There are many types of failures for rod pump systems
including tubing failures, rod string failures and rod pump
failures. The reasons for rod pump system failures can be
broadly classified into two main categories: mechanical and
chemical. Mechanical failures are caused by improper
design, by improper manufacturing, or by wear and tear dur-
ing operations. Well conditions such as sand intrusions, gas
pounding, and asphalting can contribute to excessive wear
and tear. Chemical failures are generally caused by the cor-
rosive nature of the fluid being pumped through the systems.
For example, the fluid may contain hydrogen sulfide (H,S) or
bacteria that excrete corrosive chemicals. Mechanical and
chemical failures initially reduce the efficiency of pumping
operations, but in due course will bring the systems to fail,
thus requiring reactive well work. Wells are shut down to
perform workovers, which results in production loss and an
increase in the operating expenditure (OPEX) in addition to
the regular maintenance cost.

Currently, pump off controllers (POCs) play a significant
role in monitoring and controlling the operation of rod pump
systems. For example, the POCs can be programmed to auto-
matically shut down units if the values of torque and load
deviate beyond a torque/load threshold. While POCs reduce
the amount of work required by the production and mainte-
nance personnel operating the field, they may not be sufficient
since a great deal of time and effort is still needed to monitor
each and every operating unit. The dynamometer card pat-
terns collected by the POCs can be analyzed to better under-
stand the behavior of the rod pump systems. However, suc-
cessful analysis is directly linked to the skill and experience
of'the analyst and even the most knowledgable analysts can be
misled into an incorrect diagnosis. In some cases, the dyna-
mometer card may miss some early warnings of rod pump
system failures. Furthermore, the well measurement dataset
obtained by POCs often poses difficult challenges to data
mining with respect to high dimensionality, noise, and inad-
equate labeling.
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The data collected from POC:s is inherently highly dimen-
sional as POC controllers gather and record periodic well
sensor measurements indicating production and well status
through load cells, motor sensors, pressure transducers and
relays. For example, in a dataset having 14 attributes where
each attribute is measured daily, the dimension is 1400 for a
dataset over a hundred day period.

Datasets for well measurement artificial lift also tend to be
very noisy. The noise is produced from multiple sources,
which include natural and manmade causes. The wells oper-
ate in rough physical environments which often results in
equipment break down. For example, lightning strikes can
sometimes disrupt wireless communication networks. Data
collected by the POC sensors is therefore not received by a
centralized logging database, which results in missing values
in the data. Additionally, petroleum engineering field workers
regularly perform maintenance and make calibration adjust-
ments to the equipment. These maintenance activities and
adjustments can cause the sensor measurements to change—
sometimes considerably. For example, the POC sensors are
occasionally recalibrated, which can introduce extreme
changes in sensor readings. It is not standard practice to
record such recalibrations. Furthermore, while workers are
generally diligent with regards to logging their work in down-
time and workover database tables, occasionally alog entry is
delayed or not logged at all. Another source of data noise is
the variation caused by the force drive mechanisms. In oil
fields with insufficient formation pressure, injection wells can
be used to inject fluid (e.g., water, steam, polymer, carbon
dioxide) into the reservoir to drive hydrocarbons toward pro-
duction wells. This fluid injection can also aftect the POC
sensors measurements.

The datasets received by POCs are also not explicitly
labeled. Manually labeling the dataset received by a POC is
generally too time consuming and very tedious. Furthermore,
access to petroleum engineering subject matter experts
(SMEs) to perform the manual labeling is also often limited.
Fully automatic labeling is also problematic. Although the
well failure events are recorded in the well database, they are
not suitable for direct use because of semantic differences in
the interpretation of well failure dates. In general, the well
failure dates in the database do not correspond to the actual
failure dates, or even to the dates when the SME:s first notice
the failures. Rather, the recorded failure dates typically cor-
respond to the date when the workers shut down the well to
begin repairs. Because of the backlog of well repair jobs, the
difference can be several months between the actual failure
dates and the recorded failure dates. Moreover, even if the
exact failure dates are known, differentiation of the failures
among normal, pre-failure and failure signals still needs to be
performed.

FIG. 1 shows an example of a past well failure where
several selected attributes collected through a POC are dis-
played. As shown in FIG. 1, the well’s failure was detected by
field personnel on Mar. 31, 2010. After pulling all the pump-
ing systems above the ground, they discovered that there were
holes on the tubing that were causing the leaking problems,
which in turn, reduced the fluid load the rod pump carried to
the surface. Through a “look back” process, it was found that
the actual leak started around Feb. 24, 2010. Even before that,
a subject matter expert established that “rod cut” events likely
started around Nov. 25, 2009, wherein the rod began cutting
the tubing. After the initial cutting, the problem continually
grew worse cutting larger holes into the tubing.

The inventors therefore have recognized a need for more
automated systems, such as artificial intelligent systems that
can dynamically keep track of certain parameters in a group
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of artificial lift systems, detect impending system failures and
provide early indications or warnings thereof, and provide
suggestions on types of maintenance work to address the
detected failures including providing an optimal work sched-
ule for performing such work. Such systems would be a great
asset to industry personnel by potentially allowing them to be
more proactive and to make better maintenance decisions.
These systems could increase the efficiency of the artificial
lift systems to bring down Operating Expenditure (OPEX),
thereby making the artificial lift operations more economical.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example well failure and failure pattern.

FIG. 2 shows early detection of true failures in the oilfield
(2A) and early detection of pre-signals of true failures in the
oilfield (2B), according to embodiments of the present inven-
tion.

FIG. 3 is a flow diagram for detecting artificial lift system
failures, according to an embodiment of the present inven-
tion.

FIGS. 4A and 4B show the results of using data preparation
techniques, according to an embodiment of the present inven-
tion.

FIG. 5 is a flow diagram for training and testing a stochastic
learning model, according to an embodiment of the present
invention.

FIG. 6 shows an algorithm for detecting artificial lift sys-
tem failures, according to an embodiment of the present
invention.

FIG. 7 shows training and testing results for detecting
artificial lift system failures, according to an embodiment of
the present invention.

FIG. 8 shows pre-failure and failure signal testing results
for an artificial lift system having a tubing failure, according
to an embodiment of the present invention.

FIG. 9 shows pre-failure and failure signal testing results
for an artificial lift system having a rod failure, according to
an embodiment of the present invention.

FIG. 10 shows pre-failure signal testing results for anormal
artificial lift system, according to an embodiment of the
present invention.

FIG. 11 shows a system for detecting failures in artificial
lift systems, according to an embodiment of the present
invention.

DETAILED DESCRIPTION

Embodiments of the present invention relate to artificial lift
system failures in oil field assets, which lead to production
loss and can greatly increase operational expenditures. In
particular, systems, methods, and computer program prod-
ucts are disclosed for analyzing and detecting the perfor-
mance of artificial lift systems such as sucker rod pumps. For
example, these units are developed using artificial intelli-
gence (Al) and data mining techniques. Detecting artificial
lift system failures can dramatically improve performance,
such as by adjusting operating parameters to forestall failures
or by scheduling maintenance to reduce unplanned repairs
and minimize downtime.

As will be described in more detail herein, an automatic
early failure detection framework and corresponding algo-
rithms for artificial lift systems are disclosed. State-of-the-art
data mining approaches are adapted to learn patterns of
dynamical pre-failure and normal well time series records,
which are used to make failure detections. Measured data
from artificial lift systems can include many parameters such
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4

as card area, production, daily run time, stoke per minutes,
and other parameters. For example, in one embodiment, more
than 14 parameters of functioning of a sucker rod pump
system are considered in data mining. Two classification
based detection models are employed by combining two
supervised learning algorithms. The models are calibrated to
learn and easily recogonize any anomaly, failure, pre-failure,
and normal pattern from archival historic pump operational
data.

For convenience and simplicity, rod pumps are used to
illustrate the early failure detection using the models. The
results show that the failure detection framework is capable of
capturing future rod pump and tubing failures using data from
real-world assets using rod pump artificial lift systems. The
models use measured data to learn and automatically detect
possible failures in a large asset of thousands of wells with
over 90% accuracy. Management of detected failures can be
prioritized for production engineer for timely and suitable
actions. The methods can enable engineers detect problems in
the artificial lift operations before they happen from a remote
operations control center. Based on detection results, a cor-
responding action plan can be implemented to minimize
losses in production and re-entry cost. Field experts can not
only remotely recognize the problem before any on-site
action, but also save significant time and labor cost.

FIG. 2 shows that the constructed models are capable
detecting the possible failures in the field, as well as, provid-
ing early detection of emerging failures. In particular, FIG.
2A shows early detection of true failures in the oilfield and
FIG. 2B shows early detection of pre-signals of true failures
in the oilfield. It is assumed that there are several pre-failure
signals before failures happen (PS1, PS2 and Pre-failure Sig-
nal). Furthermore, there is usually a time lag between when a
true hazard or failure occurs and when field engineers recog-
nize the occurrence of failures, which is typically due to
human delay. Recorded failures are shown in the timeline of
FIG. 2 as “Rec. Failure”. The models can accelerate early
recognition of failures in the oilfield and at a much earlier
time than what can be done by the engineers.

FIG. 3 shows a workflow for detection of failures in artifi-
cial lift systems. The workflow in FIG. 3 can be divided into
four main categories: Data Extraction (which is associated
with Step 101), Data Preparation (which is associated with
Step 103), Data Mining (which is associated with Steps 105,
107), and Outputs/Alerts (which is associated with Step 109).
As will be described, Data Extraction comprises retrieving
data from one or more databases or information storage sys-
tem such as a System of Records (SOR), DataMart™,
LOWIS™ (Life of Well Information Software), or
Microsoft® Access. Data (e.g. workovers, beam analysis
tables, etc) needed for failure detection can be extracted into
tables, graphs, equations, or other usable format. Data Prepa-
ration typically includes preparing and filtering data. Data
preparation can address the problem of noise and missing
values. Data Mining includes transforming the raw data,
which is extracted from a daily surveillance record, into fea-
tures and training and testing of Artificial Intelligence (Al)
Models to detect failures in the oilfield. For example, general
supervised learning algorithms can be applied to train, test
and evaluate results in Data Mining. The Outputs/Alerts stage
is used to communicate detected failures to work personnel
such as through a visualized interface.

Data Extraction

To perform failure detection, data is first collected for
artificial lift systems of interest, such as sucker rod pumps.
For example, data can be collected from pump off controllers
(POCs), which gather and record periodic well sensor mea-
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surements indicating production and well status through load
cells, motor sensors, pressure transducers and relays. Some
attributes recorded by these sensors are card area, peak sur-
face load, minimum surface load, strokes per minute, surface
stroke length, flow line pressure, pump fillage, yesterday
cycles, and daily run time, while calculated GB torque, pol-
ished rod HP, and net DH pump efficiency are calculated.
These attributes are typically measured daily, sent over wire-
less network, and recorded in a database such as those avail-
able under the trade names of LOWIS™ (Life of Well Infor-
mation Software) or DataMart™, which are both available
from Weatherford International [.td. Another example of a
database or storage system (System of Records) is
Microsoft® Access. In the database, attribute values can be
indexed by a well identifier and a date. In addition to these
daily measurements, field specialists can perform intermit-
tent tests and enter the test results into the database. These
attributes include last approved oil, last approved water, and
fluid level. Since these attributes are generally not measured
daily, the missing daily values can be automatically filled in
with the previous measurement, i.e., these attribute values are
assumed to be piecewise constants. Finally, a special attribute
called “class” can be added that indicates the daily status of
the well, i.e. either it is performing normally, is in pre-failure
stage, or it has failed. All these attributes together define a
labeled multivariate time series dataset for artificial lift sys-
tems.

The attributes can be partitioned into a plurality of attribute
groups and ranked according to a metric that combines rel-
evancy to failure predication and data quality. In one embodi-
ment, the attribute groups are divided into three groups,
which are labeled A, B and C with group A being the most
relevant and having the highest data quality.

A. Card area, peak surface load, minimum surface load,

yesterday cycles, daily run time

B. Strokes per minute, pump fillage, calculated GB torque,

polished rod HP, net DH pump efficiency, gross fluid rate
(sum of last approved oil and water), flow line pressure

C. Surface stroke length

Software connectors are used to extract data in Step 101
from the artificial lift databases and feed it to the prediction
system. For example, this can be achieved by running a SQL
query on the database, such as LOWIS™ or the DataMart™,
to extract the necessary attributes for each well in the form of
time series.

Data Preparation

Raw artificial lift time series data typically contains noise
and faults, which can be attributed to multiple factors. For
example, severe weather conditions, such as lighting strikes,
can disrupt communication causing data to be dropped. Tran-
scription errors may occur if data is manually entered into the
system. This noisy and faulty data can significantly degrade
the performance of data mining algorithms. Data preparation
is performed in Step 103 to reduce the noise as much as
possible. An example of a noise reduction technique includes
using the Grubbs’s test to detect outliers and applying a
locally weighted scatter plot smoothing algorithm to smooth
the impact of the outliers. The denoised data is then trans-
formed into features and all the time series data is transformed
into a feature set.

FIG. 4 shows the impact of outliers and the results for
before (4A) and after (4B) the smoothing process using linear
regression on artificial data points where random Gaussian
noise and two outliers were added. The two outliers biased the
curve by introducing two local peaks—which in fact do not
exist. After the effects of the outliers were removed by using
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the smoothing process, the same regression algorithm is able
to recover the original shape of the curve.
Data Mining

Each artificial lift system is characterized by multiple
attributes, where each attribute by itself is a temporal
sequence. This type of dataset is called a multivariate time
series, where each multivariate time series refers to the data
for a specific well. As used herein, a multivariate time series
T=t,,t,,...,t, comprises an ordered set of m variables. Each
variable t, is a k-tuple, where each tuple t=t; , t,5, t;5, . . ., t;1
contains k real-values. The raw data, which is extracted from
a daily surveillance record, is transformed into features in
Step 105. For example, methods that can be used for feature
extraction include those described by L.i Wei and Eamonn
Keogh at the 12th ACM SIGKDD international conference on
knowledge discovery and data mining (L.i Wei, Eamonn J.
Keogh: Semi-supervised time series classification. KDD
2006: 748-753), which is herein incorporated by reference in
its entirety.

The training dataset typically includes data from many
artificial lift systems from the same field. In some embodi-
ments, the training dataset contains data from artificial lift
systems across multiple fields. All the wells are different in
terms of rod pump system and well conditions. All of the well
data is normalized in order to eliminate these differences.
Normalization is based on the global median. As used herein,
the percentage change is used instead of the absolute value,
which is obtained by dividing the absolute value by the mean
value. This pre-processing shows good results. Multi-dimen-
sional scaling assisted labeling is used such that the multi-
dimensional data is plotted into a 2D plot, and the difference
between pre-failure, failure, and normal points can be visu-
ally determined.

FIG. 5 shows a workflow for training and testing of Artifi-
cial Intelligence (Al) Models according to Step 107 in FIG. 3.
For example, supervised learning algorithms can be applied
to train, test and evaluate results in Data Mining. In super-
vised learning, the data mining algorithm is given positive
and negative training examples of the concept the algorithm is
supposed to learn. The formulation for this artificial lift
domain is given an artificial lift multivariate time series with
well class labels as the training dataset, which can be used to
generate a failure detection model. When given previously
unseen wells from a test dataset with their multivariate time
series, but not the class values, the model can predict class
values for that well. This learning problem is called super-
vised, because the class labels are used to direct the learning
behavior of the data mining algorithm. In supervised learn-
ing, the resulting detection model does not change with
respect to well data from the testing set.

Examples of supervised learning include AdaBoost Baye-
sian Network (AdaBNet) machine learning algorithms and
AdaBoost Decision Tree (AdaDT) machine learning algo-
rithms. FIG. 6 shows the AdaBNet algorithm. AdaBoost is an
adaptive boosting algorithm. Unlike other algorithms that
learn only one algorithm, AdaBoost is an algorithm for con-
structing a “strong” classifier as linear combination of
“simple weak” classifiers h(x).

T
f@=) ah®
t=1

where h(x) is weak or basis classifier, and a, is the weight of
this classifier at any given time, t.
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The final output of AdaBoost is H(x)=sign(f(x)). AdaBoost
utilizes the weighted training set. During learning of each
basic classifier, h(x), it increases weight of misclassified
examples and decreases weight of correctly classified
examples. AdaBoost is simple to implement and can achieve
a very low training error.

AdaBoost can be viewed as optimizing the following expo-
nential loss function,

Laglsyy=e ™™
If

fx) =

1 T
52, wh(®)
t=1

(the factor of %2 has no effect on the classifier output) is
rewritten, then the full learning objective function is

m{z sl a,h,m]
i

which is optimized with respect to the weights ., and the
parameters of the basic classifiers. Note that the exponential
loss is an upper-bound on the 0-1 loss,

L, (xy)=Lo((xy)

The basic classifiers are restricted as either Bayesian net-
works or decision trees, which are called AdaBNet and
AdaDT algorithm, respectively. The optimal choice for h(x)
is the weak classifier that minimizes the weighted number of
errors,

hmargmingZ,_ VD, fy=h(x;)]

where D (i) is a distribution of weights over the training set,
and N is the size of the training set. The minimum fraction of
errors for that classifier is

€2 "DDIy=h(x)]

Error Bound of AdaBNet and AdaDT
The training error of the AdaBoost algorithm is:

T

Pr(error) < Z 2\/ &l —g)

If we let

& = 3 Yt
then
T
Pr(error) < 1_[ 2\/ &l —g)
=1
T T T
[] Vi-%7 =exp|-> kL1/20172 —y,)] = exp[—ZZ yf]
=1 =1 =1

where KL(a||b)=a In(a/b)+(1-a)ln((1-a)/(1-b)) is the Kull-
back-Leibler divergence.
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This means that the training error drops exponentially if
each weak classifier is slightly better than random. Also, if the
errors of all the classifiers are

[T

& =

then P {error)=exp(—2Ty?). That is to say, as the number of
iterations goes towards infinity, the upper bound of the final
classifier error approaches zero. Accordingly, AdaBoost can
convert a weak learning algorithm into a strong learning
algorithm, with arbitrarily low error rates.
Overfitting

Overfitting generally occurs when a model is excessively
complex or too powerful in relation to the amount of data
available. When a model is overfitted, it will lose accuracy
during detection procedure. With the exponential loss and 0-1
loss, there is no overfitting for AdaBNet and AdaDT algo-
rithms. Using the objective function to minimize

1
E= Z e*z}’iZ,T:l ahy(x)
i

Consider the weak classifier f, to be added at step t, then,

E_E B zy‘Z L a it yiorh )

i

1
i

D (he ' + XGESS

e ¥

ity (xp)=y;

2

ik (xFY;

E= (e —e ™)) Di(iilh(x) # y)+ e " Dy

where

1
D) = eiiyizj 1 th(x)

The optimal value for a, can be solved as,

jf 5+ e*“f/z)z Dy (DI(he(x) # y1) ~ —e*“f/zz D=0

The following weights are given as,

0=e%2g +e %2 — o7/

% = e (1 — &)

This process shows that weights can be found for the algo-
rithms in any situation and therefore, there is no overfitting in
these algorithms.
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Output/Alerts

All abnormal events are considered as failures, including
true failures and downtimes. Therefore, in order to verify
detection alerts, a look forward-backward process is used.
Alerts, which are communicated to an operator or technician
in Step 109, indicate that an artificial lift system is detected to
fail. The alert can be utilized to minimize downtime of the
well or for other reservoir management decisions.

EXAMPLES

The below examples focus on tubing failure and rod failure
of'sucker rod pump artificial lift systems to show the accuracy
achieved using AdaBNet and AdaDT algorithms. Data is
extracted and labelled as either normal or failure (i.e., rod
failure, tubing failure, and pre-signals of the failures). This is
used as training set to train the models. The trained models are
then used to detect possible failures of rod pump systems. The
tables below show confusion matrices of training results with
10-fold cross validation from both AdaBNet and AdaDT
algorithms, which show how well the models could be
trained. The rows are ground truth labels and the columns are
classified labels by the models. The results show that the
training errors for both algorithms are very low (less than
0.12%). The Confusion Matrix for AdaBNet, 10-fold cross
validation (record level) is below:

Tubing Rod Pre- Error
Normal Failure Failure Signal  Rate (%)
Normal 2898 1 6 1 0.0027
Tubing Failure 2 18 0 0 0.10
Rod Failure 2 0 46 0 0.042
StartToFail 3 0 0 23 0.115

The Confusion Matrix for AdaDT, 10-fold cross validation
(record level) is below:

Tubing Rod Pre- Error
Normal Failure Failure Signal  Rate (%)
Normal 2903 1 2 0 0.001
Tubing Failure 0 20 0 0 0
Rod Failure 0 0 48 0 0
StartToFail 2 0 0 24 0.076

The AdaBNet model was tested on 426 unknown wells (37
true failure wells and 389 true normal wells). As shown in the
below table, the testing results indicate the high testing accu-
racy for both normal wells (97.7%) and failure wells (91.9%)
with normalization.

True Normal True Failure

Predicted Normal
Predicted Failure

380 (97.7%)
3(8.1%)

9 (2.3%)
34 (91.9%)

FIG. 7 gives the testing results by AdaDT algorithm and
shows the highest test accuracy of AdaDT when number of
iteration is between 80 and 180, which is about 95%. When
number of iteration is more than 180, the model shows over-
fitting with testing accuracy decreasing.

FIG. 8 shows pre-failure and failure signal testing results
for an artificial lift system having a tubing failure. As shown
in FIG. 8, the algorithm successfully detects the tubing failure
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10
about 2 months before the recorded failure date in the SOR,
and pre-tubing failure about 8 months ahead of the recorded
date in the SOR.

FIG. 9 shows pre-failure and failure signal testing results
for an artificial lift system having a rod failure. As shown in
FIG. 9, the algorithms can detect the rod pump failures ahead
of time.

In FIGS. 8 and 9, there is time delay between true failure
date and recorded failure date because it will take some time
for the field engineer to recognize and record the failure in the
database. The algorithms can detect failures ahead of time
which can save lots of cost and production for the operator.
The detection algorithms also successtully detect all the miss-
ing data. Even though it is a trivial job for one to recognize
missing records for a few wells, it is not easy when we are
considering thousands of wells. The detection algorithms
provide an automatic way to recognize the missing records
and leave it to SME about how to interpret the meaning of the
missing data, which may be due to maintenance, failure or
other reasons.

FIG. 10 shows pre-failure and failure signal testing results
for a normal artificial lift system. The algorithms do not give
false alarms on the selected well.

The data mining framework is able to automatically rec-
ognize early failure of artificial lift systems. Failure detection
in rod pump wells use parameters that indicate the daily
functions of rod pump wells and employ advanced machine
learning techniques. In some embodiments, more than 14
parameters that indicate the daily functions of rod pump wells
are utilized. The system recognizes failing, failed, and normal
situations by learning patterns/signature from historical
pump data, that include card area, peak-surface load, mini-
mum-surface load, daily run-time, and production data. This
data is automatically pre-processed using expert domain
knowledge to reduce noise and to fill-in missing data. Ada-
Boost algorithms, such as AdaBNet and AdaDT, are used for
learning and recognizing possible failures in oilfields.

The machine learning algorithm AdaBNet uses boosting to
learn several Bayesian Network models and then combines
these models with different weights to form a stronger
boosted model. The approach generates this single boosted
model that is applicable across all the wells in a field, as
opposed to well-specific approaches that generate one model
per well. This model detects anomalies, pre-failure and fail-
ure signals and generates corresponding alerts. Early fault
detection in artificial lift systems, such as rod pump wells, is
useful for automatic monitoring of large number of assets
remotely. A training dataset of 12 wells is used to construct
the learning model for the AdaBNet algorithm. The algorithm
is tested on 426 wells from the same field. The testing results
show that the suggested algorithms have high accuracy for
early failure detection, which is more than 90% for the given
data.

This framework can help field operators not only to
remotely recognize and predict failures in advance, but also to
help prioritize the available manpower, save significant time,
reduce operating expense (OPEX), downtime and lost pro-
duction. Early fault detection in rod pump systems can allow
for proactive maintenance that can delay and even prevent
future well failures. The proposed algorithm can enable pro-
duction engineers remotely detect failures and anomalies
before they occur, and assess the situation at control centers
before taking any remedial or corrective actions. This
approach to using a single model for an entire field is superior
to other approaches that use an individual model for each
well.
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The above described methods can be implemented in the
general context of instructions executed by a computer. Such
computer-executable instructions may include programs,
routines, objects, components, data structures, and computer
software technologies that can be used to perform particular
tasks and process abstract data types. Software implementa-
tions of the above described methods may be coded in differ-
ent languages for application in a variety of computing plat-
forms and environments. It will be appreciated that the scope
and underlying principles of the above described methods are
not limited to any particular computer software technology.

Moreover, those skilled in the art will appreciate that the
above described methods may be practiced using a processor
that comprises any one or a combination of computer pro-
cessing system configurations, including, but not limited to,
single and multi-processor systems, hand-held devices, pro-
grammable consumer electronics, mini-computers, or main-
frame computers. The above described methods may also be
practiced in distributed computing environments where tasks
are performed by servers or other processing devices that are
linked through a one or more data communications networks.
In a distributed computing environment, program modules
may be located in both local and remote computer storage
media including memory storage devices.

Also, an article of manufacture for use with a computer
processor, such as a CD, pre-recorded disk or other equivalent
devices, could include a computer program storage medium
and program means recorded thereon for directing the com-
puter processor to facilitate the implementation and practice
of the above described methods. Such devices and articles of
manufacture also fall within the spirit and scope of the present
invention.

As will be described, the invention can be implemented in
numerous ways, including for example as a method (includ-
ing a computer-implemented method), a system (including a
computer processing system), an apparatus, a computer read-
able medium, a computer program product, a graphical user
interface, a web portal, or a data structure tangibly fixed in a
computer readable memory.

FIG. 11 illustrates a system 200 for analyzing and detecting
failures for artificial lift systems such as on sucker rod pumps,
such as by using method 100. System 200 includes user
interface 210, such that an operator can actively input infor-
mation and review operations of system 200. User interface
210 can be any means in which a person is capable of inter-
acting with system 200 such as a keyboard, mouse, or touch-
screen display. Operator-entered data input into system 200
through user interface 210, can be stored in database 230.
Measured well data such as from POCs, which is received by
one or more well sensors 220, can also be input into system
200 for storage in database 230. Additionally, any informa-
tion generated by system 200 can be stored in database 230.

Database 230 can store, for example, well sensor measure-
ments 231 indicating artificial lift information through load
cells, motor sensors, pressure transducers and relays. Some
attributes recorded by well sensors 220 are card area, peak
surface load, minimum surface load, strokes per minute, sur-
face stroke length, flow line pressure, pump fillage, yesterday
cycles, and daily run time. Furthermore, GB torque, polished
rod HP, and net DH pump efficiency can be calculated for
storage in database 230. Well test data 233 can also be stored
in database 230, which can include last approved oil, last
approved water, and fluid level.

System 200 includes a computer program product or soft-
ware 240 that is stored on a processor readable medium.
Current examples of a processor readable medium include,
but are not limited to, an electronic circuit, a semiconductor
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memory device, a ROM, a flash memory, an erasable pro-
grammable ROM (EPROM), a floppy diskette, a compact
disk (CD-ROM), an optical disk, a hard disk, a fiber optic
medium and/or other tangible media. As will be described
more fully herein, software 240 can include a plurality of
modules for performing system tasks such as performing the
methods, such as method 100, previously described herein.
Processor 250 interprets instructions to execute software 240,
as well as, generates automatic instructions to execute soft-
ware for system 200 responsive to predetermined conditions.
Instructions from both user interface 210 and software 240
are processed by processor 250 for operation of system 200.
In some embodiments, a plurality of processors can be uti-
lized such that system operations can be executed more rap-
idly.

Examples of modules for software 240 include, but are not
limited to, Data Extraction Module 241, Data Preparation
Module 243, Data Mining Module 245, and Alerts Module
247. Data Extraction Module 241 is configured to retrieve
artificial lift data from database 230, such as by using soft-
ware connectors, and feed it to Data Preparation Module 243.
Data Preparation Module 243 is configured to apply noise
reduction techniques and fault techniques to the extracted
data, as well as, fill in missing data. Data Mining Module 247
is configured to extract features from the processed data. Data
Mining Module 247 is further configured to apply learning
algorithms, such as supervised learning techniques, to train,
test and evaluate the results in the data mining stage, thereby
detecting failures for the artificial lift systems. Alerts Module
247 provide alerts that an artificial lift system is detected to
fail.

In certain embodiments, system 200 can include reporting
unit 260 to provide information to the operator or to other
systems (not shown). For example, reporting unit 260 can
receive alerts from Alerts Module 247 and output them to an
operator or technician that an artificial lift system is detected
to fail. The alert can be utilized to minimize downtime of the
artificial lift system or for other reservoir management deci-
sions. Reporting unit 260 can be a printer, display screen, or
a data storage device. However, it should be understood that
system 200 need not include reporting unit 260, and alterna-
tively user interface 210 can be utilized for reporting infor-
mation of system 200 to the operator.

Communication between any components of system 200,
such as user interface 210, well sensors 220, database 230,
software 240, processor 250 and reporting unit 260, can be
transferred over a communications network 270. Communi-
cations network 270 can be any means that allows for infor-
mation transfer. Examples of communications network 270
presently include, but are not limited to, a switch within a
computer, a personal area network (PAN), a local area net-
work (LAN), a wide area network (WAN), and a global area
network (GAN). Communications network 270 can also
include any hardware technology used to connect the indi-
vidual devices in the network, such as an optical cable or
wireless radio frequency.

While in the foregoing specification this invention has been
described in relation to certain preferred embodiments
thereof, and many details have been set forth for the purpose
ofillustration, it will be apparent to those skilled in the art that
the invention is susceptible to alteration and that certain other
details described herein can vary considerably without
departing from the basic principles of the invention.
Nomeclature
AdaBNet: AdaBoost and Bayesian Network
AdaDT: AdaBoost and Decision Tree
SVM: Support Vector Machine
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PS1: Pre-Signal 1
PS2: Pre-Signal 2
Rec. Failure: Recorded Failure
POC: Pump Off Controller
GB: Gerar Box
HP: Horse Power
DH: Down Hole
h,(x): Weak or basis classifier
o,: Weight of classifier
H(x): Output classifier
L., (X, y): Exponential loss function
L. (%, y): 0-1 loss function
€,; Minimum fraction of errors
D,(i): Distribution of weights over the training set
P,(error): Training error
KT (a||b): Kullback-Leibler divergence
E: Objective function
We claim:
1. A method of monitoring a plurality of artificial lift sys-
tems in a hydrocarbon reservoir, the method being imple-
mented on a computer system, the method comprising:
monitoring a plurality of attributes of the plurality of arti-
ficial lift systems to collect a data set characterizing
performance of the plurality of artificial lift systems,
each one of the plurality of artificial lift systems having
a plurality of attributes;

applying dimensionality reduction techniques to the col-
lected data set to project the collected data set into a
reduced dimensional space;

clustering the collected data set in the reduced dimensional

space to generate a labeled training data set;
wherein a portion of the collected data having the reduced
dimension form clusters that contain known failures col-
lected during a period of time are used to label another
portion of collected data during another period of time
from the same clusters as containing failures to generate
the labeled training data set;
applying a machine learning algorithm using the labeled
training data set to boost learning and build a failure
detection model for the plurality of artificial lift systems;

applying the failure detection model to another collected
data set from the plurality of artificial lift systems; and

automatically generating an alert in response to identifica-
tion of a data value in said another collected data set
from the plurality of artificial lift systems indicating a
faultin an artificial lift system in the plurality of artificial
lift systems that generated the data value indicating the
fault.

2. The method of claim 1, further comprising pre-process-
ing the collected data prior to the applying the machine learn-
ing algorithm.

3. The method of claim 2, wherein the pre-processing
comprises applying a noise-reducing algorithm to the col-
lected data.

4. The method of claim 1, wherein the applying the
machine learning algorithm comprises applying a Bayesian
learning algorithm or a decision tree learning algorithm, or
both.

5. The method of claim 1, wherein the monitoring com-
prises measuring attributes collected from pump off control-
lers of an array of sucker rod pumps located in the hydrocar-
bon reservoir.

6. The method of claim 1, further comprising partitioning
into groups, the groups being ranked in accordance with a
metric based on relevancy to failure prediction.

7. The method of claim 6, wherein the metric is further
based on data quality.
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8. The method of claim 1, wherein the applying the
machine learning algorithm comprises:

constructing a classifier as a linear combination of weak
classifiers, and

increasing weight of misclassified training examples and
decreasing weight of correctly classified training
examples.

9. The method of claim 1, wherein, when an alert is gen-
erated, a look forward-backward process is executed as a
verification of the alert condition.

10. A system of monitoring a plurality of artificial lift
systems in a hydrocarbon reservoir, comprising:

a processor configured and arranged to receive a plurality
of attributes characterizing performance of the plurality
of artificial lift systems, each one of the plurality of
artificial lift systems having a plurality of attributes;

the processor being programmed with machine executable
instructions for:
applying dimensionality reduction techniques to the col-

lected data set to project the collected data set into a
reduced dimensional space;
clustering the collected data set in the reduced dimen-
sional space to generate a labeled training data set;
wherein a portion of the collected data in the reduced
dimensional space form clusters that contain known
failures collected during a period of time are used to
label another portion of collected data during another
period of time from the same clusters as containing
failures to generate the labeled training data set;
applying a machine learning algorithm using the labeled
training data set to boost learning and build a failure
detection model for the plurality of artificial lift sys-
tems; and
applying the failure detection model to another collected
data set from the plurality of artificial lift systems; and
the processor being further programmed with machine
executable instructions for automatically generating an
alert in response to identification of a data value in said
another collected data set from the plurality of artificial
lift systems indicating a fault in an artificial lift system in
the plurality of artificial lift systems that generated the
data value indicating the fault.

11. The system of claim 10, further comprising a plurality
of'detectors, configured and arranged to monitor the attributes
of the artificial lift system, and in communication with a
database for collecting the monitored attributes, the database
being further in communication with the processor.

12. A non-transitory tangible machine readable medium
comprising instructions for executing machine executable
instructions for performing a method comprising:

monitoring a plurality of attributes of a plurality of artificial
lift systems to collect a data set characterizing perfor-
mance of the artificial lift system, each one of the plu-
rality of artificial lift systems having a plurality of
attributes;

applying dimensionality reduction techniques to the col-
lected data set to project the collected data set into a
reduced dimensional space;

clustering the collected data set in the reduced dimensional
space to generate a labeled training data set;

wherein a portion of the collected data in the reduced
dimensional space form clusters that contain known fail-
ures collected during a period of time are used to label
another portion of collected data during another period
of time from the same clusters as containing failures to
generate the labeled training data set;
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applying a machine learning algorithm using the labeled
training data set to boost learning and build a failure
detection model for the plurality of artificial lift systems;

applying the failure detection model to another collected
data set from the plurality of artificial lift systems; and

automatically generating an alert in response to identifica-
tion of a data value in said another collected data set
from the plurality of artificial lift systems indicating a
faultin an artificial lift system in the plurality of artificial
lift systems that generated the data value indicating the
fault.

13. The system of claim 10, wherein the processor is fur-
ther being programmed with machine executable instructions
for pre-processing the collected data prior to the applying the
machine learning algorithm.

14. The system of claim 13, wherein the pre-processing
comprises applying a noise-reducing algorithm to the col-
lected data.

15. The system of claim 10, wherein the applying the
machine learning algorithm comprises applying a Bayesian
learning algorithm or a decision tree learning algorithm, or
both.
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16. The system of claim 10, wherein the monitoring com-
prises measuring attributes collected from pump off control-
lers of an array of sucker rod pumps located in the hydrocar-
bon reservoir.

17. The system of claim 10, wherein the processor is fur-
ther being programmed with machine executable instructions
for partitioning into groups, the groups being ranked in accor-
dance with a metric based on relevancy to failure prediction.

18. The system of claim 17, wherein the metric is further
based on data quality.

19. The system of claim 10, wherein the applying the
machine learning algorithm comprises:

constructing a classifier as a linear combination of weak

classifiers, and

increasing weight of misclassified training examples and

decreasing weight of correctly classified training
examples.

20. The system of claim 10, wherein, when an alert is
generated, a look forward-backward process is executed as a
verification of the alert condition.
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